Ultrasmall Magnetic CuFeSe2 Ternary Nanocrystals for Multimodal Imaging Guided Photothermal Therapy of Cancer.
نویسندگان
چکیده
Nanoscale ternary chalcogenides have attracted intense research interest due to their wealth of tunable properties and diverse applications in energy and environmental and biomedical fields. In this article, ultrasmall magnetic CuFeSe2 ternary nanocrystals (<5.0 nm) were fabricated in the presence of thiol-functionalized poly(methacrylic acid) by an environmentally friendly aqueous method under ambient conditions. The small band gap and the existence of intermediate bands lead to a broad NIR absorbance in the range of 500-1100 nm and high photothermal conversion efficiency (82%) of CuFeSe2 nanocrystals. The resultant CuFeSe2 nanocrystals show superparamagnetism and effective attenuation for X-rays. In addition, they also exhibit excellent water solubility, colloidal stability, biocompatibility, and multifunctional groups. These properties enable them to be an ideal nanotheranostic agent for multimodal imaging [e.g., photoacoustic imaging (PAI), magnetic resonance imaging (MRI), computed tomography (CT) imaging] guided photothermal therapy of cancer.
منابع مشابه
Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance
Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...
متن کاملPhotothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals.
FeCo/graphitic carbon shell (FeCo/GC) nanocrystals (∼4-5 nm in diameter) with ultrahigh magnetization are synthesized, functionalized, and developed into multifunctional biocompatible materials. We demonstrate the ability of this material to serve as an integrated system for combined drug delivery, near-infrared (NIR) photothermal therapy, and magnetic resonance imaging (MRI) in vitro. We show ...
متن کاملGraphene Quantum Dots-Coated Bismuth Nanoparticles for X-ray CT Imaging-Guided Photothermal therapy of Cancer Cells
Introduction: Theranostic nanoparticles, which integrate both diagnostic and therapeutic capabilities into one nanoagent, has great promise to ablate more effective tumoral tissue by optimizing and real-time monitoring treatment interventions, as well as monitoring therapeutic response to corresponding effect. Multifunctional theranostic nanoagent based on graphene quantum dots...
متن کاملGadolinium polytungstate nanoclusters: a new theranostic with ultrasmall size and versatile properties for dual-modal MRCT imaging and photothermal therapyradiotherapy of cancer
The development of a new generation of nanoscaled theranostics with simple compositions and versatile properties to realize enhanced diagnoses and treatment outcomes and to avoid side effects is highly desirable but remains a great challenge. Here we report a new ultrasmall theranostic based on bovine serum albumin-coated GdW10O36 nanoclusters (GdW10 NCs) as multifunctional theranostics for mul...
متن کاملMultifunctional GQDs-Coated Fe/Bi Nanohybrids for CT/MR Dual Imaging and in vitro Photothermal Therapy
Introduction: The multipurpose nanocomposites have gained growing biomedical attention as promising nanotheranostics to improve The effectiveness of cancer treatment, which concurrently combine advantages of the therapeutic and diagnostic techniques into one nanosystem. The “all-in on” probes not only help to ablate cancerous tumors, but also allow to optimize and monitoring of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2017